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Business Wodel of Mobile Broadband
-Licensed Shared Access (LSA)

DNO business model: Multiple
Network Operator with Shared
Network Access (SNA)
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DNO | Backup/Spare Capacity >

Monetary compensation:
network rental fee
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 SNA concept development

* SNA benefit analysis

Primary 20 MW - 1000 typical customers (2kW/house)
Secondary 20 MW 2 1000 EVs (2kW/EV - low flexibility)
- 2000 EVs (1kW/EV - medium flexibility)
- 4000 EVs (0.5kW/EV - high flexibility)

 SNA applications: leasing strategy, network charges ...
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Spatial: Where is the spare capacity?

Temporal: When does it happen?
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Load forecasting: predict the spatial and temporal variation of load
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For 80 years, they have underpinned investment and operation
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The aggregated GB load barely changes over 80 years

- Periodic features remain (Minimum, Ramp rate, Plateau,
Peak...)

- 1G and 2G forecasting methods work fine (Short term -
MAPE 3% (for areas with peak around 10 GW )
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The LV load can vary substantially over days

- periodicity is gone and volatility increases. 1G and 2G forecasting
methods are dead (Short term - MAPE 20% (for households)
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- Significant variation over time caused by many explanatory variables:

meteorological factors (PVs), calendar (events) and demogeographic
factors (tariff, EVs)
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1G: Rule-based system Output
«  Similar day projection from data bank

2G: System with hand-designed Ouipt Outpat
features

« Man-made features based on experience:
features that we think will influence load Output

=
aha

Tnput Tuput Input Input

3G: System with machine-designed HII HII
features (deep learning) esieed designed
* Use the model to learn the features by itself T T

1G 2G 3G
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1G: Rule-based system
*  Similar day projection from data bank

1G Example:
Find the overall trend and similar days to predict
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2G Example:
. . » Use models such as SVR and neural networks to predict
2G: System with hand-designed the load: P
features * The iqputs are selected by human based on our
) experience;
« Man-made features based on experience: « for example: temperature, calendar, temperature”2,
features that we think will influence load temperature*calendar

Hand-designed Forecasted
features » Model ‘ load

Temperature,
daylight, holiday
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3G Challenge:

* massive number of variables
» Complex interactions between variables

* Impossible to hand design features based
on our experience

3G: System with machine-designed
features (deep learning)
* Use the model to learn the features by itself
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3G: System with machine-designed features (deep learning)

* Use the model to learn the features by itself

Features Features Features
(no (simple Degpl (complex
interactions) interactions) e interactions)

- Input

D Feature selection
- Output (forecasting)

Optimal «
Features | © | 7

» Make full use of big data collected from different sources
* Instead of forecasting, deep learning models are used to learn the features
» Each layer will learn the interaction of features from simple to complex

3G Example:
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H. Shi; M. Xu; R. Li, "Deep Learning for Household Load Forecasting —
A Novel Pooling Deep RNN," in IEEE Transactions on Smart Grid , Mar
2017, vol.PP, n0.99, pp.1-1




Preliminary trial: our method is tested on LV networks and compared with
classic methods:

Improved 39% compared with ARIMA
Improved 28% compared with SVM
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|dentify the spare capacity in the LV networks:

» To better utilise the spare capacity: e.g. SNA

* To guide the connection of LCTs

» To design tailored management of flexible demand
response for each network.
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