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Business Modeling Aims



Alternative DNO Business Model



Multiple network operator with 
Shared Network Access



Multiple network operator with 
Shared Network Access (cont.)



Primary  20 MW       1000 typical customers  (2kW/house)
Secondary 20 MW   1000 EVs (2kW/EV – low flexibility)

 2000 EVs  (1kW/EV – medium flexibility)
 4000 EVs   (0.5kW/EV – high flexibility)

SNA development

• SNA concept development

• SNA benefit analysis

• SNA applications: leasing strategy, network charges …
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Identify the spare capacity
How to identify the spare capacity in the LV networks?

Spatial:  Where is the spare capacity? 

Temporal: When does it happen?

Load forecasting： predict the spatial and temporal variation of load 
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The aggregated GB daily load profiles are a ‘given’



The aggregated GB daily load profiles are a ‘given’

The aggregated GB load barely changes over 80 years

- Periodic features remain （Minimum, Ramp rate, Plateau, 
Peak…）

- 1G and 2G forecasting methods work fine (Short term -
MAPE 3% (for areas with peak around 10 GW )
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The LV load can vary substantially over days 

- periodicity is gone and volatility increases. 1G and 2G forecasting 
methods are dead (Short term - MAPE 20% (for households)

The load profiles of LV networks are a ‘myth’

- Significant variation over time caused by many explanatory variables:
meteorological factors (PVs), calendar (events) and demogeographic
factors (tariff, EVs) 



1G: Rule-based system
• Similar day projection from data bank

2G: System with hand-designed
features

• Man-made features based on experience: 
features that we think will influence load

3G: System with machine-designed 
features (deep learning)

• Use the model to learn the features by itself

Evolution of load forecasting

1G 2G 3G



1G: Rule-based system
• Similar day projection from data bank

Evolution of load forecasting

1G Example: 
Find the overall trend and similar days to predict



2G: System with hand-designed 
features

• Man-made features based on experience: 
features that we think will influence load

Evolution of load forecasting

Forecasted 
load

Hand-designed 
features

Temperature, 
daylight, holiday

Model

2G Example: 
• Use models such as SVR and neural networks to predict 

the load; 
• The inputs are selected by human based on our 

experience; 
• for example: temperature，calendar, temperature^2, 

temperature*calendar   



3G: System with machine-designed 
features (deep learning)

• Use the model to learn the features by itself

Evolution of load forecasting

3G Challenge:

• massive number of variables 

• Complex interactions between variables

• Impossible to hand design features based 
on our experience

1G 2G 3G



3G: System with machine-designed features (deep learning)
• Use the model to learn the features by itself

Evolution of load forecasting

3G Example:

• Make full use of big data collected from different sources 
• Instead of forecasting, deep learning models are used to learn the features
• Each layer will learn the interaction of features from simple to complex
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Deep 
Model

Forecasting 
Model
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Deep 
Model
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load

……..
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Deep 
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Input 

Feature selection

Output (forecasting)



Proposed deep learning forecasting model

H. Shi; M. Xu; R. Li, "Deep Learning for Household Load Forecasting –
A Novel Pooling Deep RNN," in IEEE Transactions on Smart Grid , Mar
2017, vol.PP, no.99, pp.1-1
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Proposed Deep Learning

Preliminary trial: our method is tested on LV networks and compared with 
classic methods:

Improved 39% compared with ARIMA
Improved 28% compared with SVM

Preliminary Results



Applications

Identify the spare capacity in the LV networks:

• To better utilise the spare capacity: e.g. SNA
• To guide the connection of LCTs 
• To design tailored management of flexible demand 

response for each network.
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